New Generation of Online Authentication Strategies

• Don Malloy – NagraID Security
• Johan Rydell – Technology Nexus AB
• September 21st, 2012
Agenda

Industry Trends
Need for Strong Authentication
How OATH combats Fraud
Types of Strong Authentication solutions
Securing online transactions
Summary
Demo
Growth in Fraud

Fraud continues to grow world-wide
2011 – 285 million consumer records were breached – resulting in almost $1Trillion in losses
15+ Million Americans were victims of fraud last year
This amounts to over $500M of online fraud last year alone
Hacking into web sites and stealing passwords continue to be a main focus of fraudsters
Static Passwords are not secure: 80% hacked
Need for Strong Authentication

Networked entities face three major challenges today.

• Theft of or unauthorized access to confidential data.
• The inability to share data over a network without an increased security risk limits organizations.
• The lack of a viable single sign-on framework inhibits the growth of electronic commerce and networked operations.
Justification for Strong Authentication

• The Initiative for Open Authentication (OATH) addresses these challenges with standard, open technology that is available to all.
• OATH is taking an all-encompassing approach, delivering solutions that allow for strong authentication of all users on all devices, across all networks.
• The use of Multi-factor authentication products with an OATH application will protect against The ATM hacks mentioned previously.
History of OATH

- Created 6 years ago to provide open source strong authentication.
- It is an industry-wide collaboration that…..
- Leverages existing standards and creates an open reference architecture for strong authentication which users and service providers can rely upon, and leverage to interoperate.
- Reduces the cost and complexity of adopting strong authentication solutions.
Authentication Algorithms

- Open and royalty free specifications
- Proven security: reviewed by industry experts
- Choice: one size does not fit all

HOTP
- Event-based OTP
- Based on HMAC, SHA-1
- IETF RFC 4226

TOTP
- Time-based OTP
- Standard completed 2011
- HMAC with SHA-1, SHA-256, SHA-512
- IETF RFC 6238

OCRA
- Based on HOTP and TOTP
- Challenge-response authentication
- Short digital signatures
- IETF RFC 6287
Token Innovation

- otp embedded in credit card
- otp soft token on mobile phones
- HOTP applets on SIM cards and smart-cards
- otp embedded in flash devices
- Multi-Function Token (OTP & USB Smart Card)

50+ products shipping
One Time Password Devices

Initial Applications
- Financial – Most Governments have demanded more than static passwords
- Online Authentication
- Physical Access
One Time Password Devices

Subsequent Applications

- Contactless Payment
- Secure Network Access
- E-wallet application
- Mobile Banking
Layered Approach to Security

Applications

- OTP
- Pin Activation
- Challenge/Response
- Physical Access
- Contactless Payment
- Secure Network Access

Cards will be used for:

- EMV Payment
- Debit Cards
- Single sign on and multi apps
What is a Display Card?

- **Signature Panel**
- **Printable Surface for In-House personalization**
- **Custom Graphics & Branding**
- **EMV Contact Chip**
- **Multiple Touch Button Option**
- **Wireless Interface For Contactless Physical Access or Payment Applications (ISO14443A/B, LEGIC, MIFARE, HID, PAYPASS)**

- **Magnetic Stripe**
- **Holographic Stamp**
- **High Speed Display Panel With Scrolling Character Capacity**
- **Laser Engraving**
- **Embossing**
- **Single Button/switch**
1. Input **userID** and Password on VPN, eCommerce, online banking site ….

2. Generate dynamic password (**OTPa**) with the display card and use it for authentication.

3. Authentication information is sent to the application server (webserver, database server, vpn etc…).

4. **UserID** and **OTPa** is sent to secure authentication server.

5. Authentication server uses the **userID** to retrieve the corresponding display card information (seed).

6. Result (grant or deny access) is sent to the application server.

The seed is used to generate **OTPb**, and compares if **OTPa** = **OTPb**.
EMV chip technology updates the information every time the card is authorized online.

1. Customers insert the payment card in the POS terminal and input their PIN to pay for their purchases.

2. Merchant (acquirer) terminal requests the payment authorization from the issuer through the MasterCard payment network.

3. Card issuer processes the request and replies the acquirer with an approval code + an EMV script.

4. Acquirer terminal receives approval code and executes the EMV script to update information on the cardholder’s display card.
1. The client calls an establishment to make a high valued transaction over the phone.

2. The establishment gives the client a verification code (challenge) to enter into the TOUCH Keypad on their card.

3. Once the card verifies the challenge code it generates a response code.

4. The establishment verifies the client's response code and the request can securely be completed over the phone.
Support for Multiple Business Functions

- Authentication
- 3D Secure
- EMV/CAP
- Contactless Card
- Loyalty
• Cardholder
 – Ease of use
 • One card
 • No additional hardware
 – Convenient
 – Increased security

• Card Issuer
 – Reduced cost
 – Increased security
 – Market differentiator
 – New applications
 – Adopts to existing card issuing processes
Summary

ISSUER BENEFITS:

• Increased Revenues
• Reduced Cost
• Reduced Fraud
• Many Competitive Advantages

CARDHOLDER BENEFITS

• Security
• Control
• Convenience
• Peace of mind
Demonstration

Live Demonstration of Authentication is next.........

Introducing – Invisible Token
Thank You For Your Attention

NagraID Security
8615 Washington Blvd
Los Angeles, CA 90232
USA
t: (310) 841-2939
w: www.nidsecurity.com
e: info@nidsecurity.com

Technology Nexus
100 Montgomery street Suite 1080
San Francisco, CA 94109
USA
t: +1 650 515 3569
w: www.nexussafe.com
e: info@nexussafe.com